Números complexos
2 participantes
Página 1 de 1
Números complexos
o que quer dizer o conjugado de um número complexo
Mill- Mensagens : 1
Data de inscrição : 02/03/2010
Idade : 31
Conjugado de um Número Complexo
O conjugado e a divisão
Divisão de números complexos é semelhante à racionalização do denominador de uma fração com radicais. Assim, se temos o quociente nosso objetivo é escrevê-lo na forma a + bi. Para isso, introduziremos inicialmente o conceito de conjugado de um número complexo.
Complexos conjugados
O conjugado de um número complexo a + bi é a - bi, e o conjugado de a - bi é a + bi.
Os números complexos a + bi e a - bi são chamados complexos conjugados.
Para um número complexo z, seu conjugado é representado com ; então, se z = a + bi escrevemos = a - bi.
Exemplos
O conjugado de z = 2 + 3i é = 2 - 3i
O conjugado de z = 2 - i é = 2 + 3i
O conjugado de z = 5i é = - 5i
O conjugado de z = 10 é = 10
Quando multiplicamos um número complexo z = a + bi pelo seu conjugado = a - bi, o resultado que se obtém é um número real não negativo:
z . = (a + bi) . (a – bi)
= a2 – abi + abi – b2i2
= a2 – b2 . (-1)
A soma dos quadrados
de dois números reais
nunca é negativa
= a2 + b2
Usamos essa propriedade para expressar o quociente de dois números complexos na forma a + bi.
Dividindo dois números complexos
Para escrevermos o quociente na forma A + Bi, multiplicamos o numerador e o denominador pelo conjugado do denominador.
Divisão de números complexos é semelhante à racionalização do denominador de uma fração com radicais. Assim, se temos o quociente nosso objetivo é escrevê-lo na forma a + bi. Para isso, introduziremos inicialmente o conceito de conjugado de um número complexo.
Complexos conjugados
O conjugado de um número complexo a + bi é a - bi, e o conjugado de a - bi é a + bi.
Os números complexos a + bi e a - bi são chamados complexos conjugados.
Para um número complexo z, seu conjugado é representado com ; então, se z = a + bi escrevemos = a - bi.
Exemplos
O conjugado de z = 2 + 3i é = 2 - 3i
O conjugado de z = 2 - i é = 2 + 3i
O conjugado de z = 5i é = - 5i
O conjugado de z = 10 é = 10
Quando multiplicamos um número complexo z = a + bi pelo seu conjugado = a - bi, o resultado que se obtém é um número real não negativo:
z . = (a + bi) . (a – bi)
= a2 – abi + abi – b2i2
= a2 – b2 . (-1)
A soma dos quadrados
de dois números reais
nunca é negativa
= a2 + b2
Usamos essa propriedade para expressar o quociente de dois números complexos na forma a + bi.
Dividindo dois números complexos
Para escrevermos o quociente na forma A + Bi, multiplicamos o numerador e o denominador pelo conjugado do denominador.
Oniare- Mensagens : 5
Data de inscrição : 02/03/2010
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos